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Nonlinear Helmholtz oscillations in 
harbours and coupled basins 
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Free and forced oscillations in a basin that is connected through a narrow canal to 
either the open sea or a second basin are considered on the assumption that the spatial 
variation of the free-surface displacement is negligible. The free-surface displacement 
in the canal is allowed to be finite, subject only to the restriction (in addition to that 
implicit in the approximation of spatial uniformity) that the canal does not run dry. 
The resulting model yields a Hamiltonian pair of phase-plane equations for the free 
oscillations, which are integrated in terms of elliptic functions on the additional 
assumption that the kinetic energy of the motion in the basin(s) is negligible compared 
with that in the canal or otherwise through an expansion in an amplitude parameter. 
The corresponding model for forced oscillations that are limited by radiation damping 
yields a generalization of Duffing’s equation for an oscillator with a soft spring, the 
solution of which is obtained as an expansion in the amplitude of the fundamental 
term in a Fourier expansion. Equivalent circuits are developed for the various models. 

1. Introduction 
Helmholtz oscillations occur in a basin that is connected to a large body of water 

through a narrow canal (figure 1)  or in two or more basins that are connected by one 
or more narrow canals (figure 2). Their natural frequency is small compared with the 
natural frequency (frequencies) of the closed basin(s). They are especially significant 
for typical harbours in consequence of their susceptability to  excitation by tsunamis. 

Consider, for example (figure l), a basin of free-surface area S that is connected to 
the open sea through a canal of uniform breadth b, uniform depth d and length 1 and 
suppose that 

and 
h b, d, I, Sit (1 .1)  

bl/S = 8 4 1, (1.2) 

where h is a characteristic wavelength. It follows from (1 .1)  that shallow-water theory 
is applicable and that the spatial (horizontal) variation of the free-surface displacement 
may be neglected, and from (1 .2)  that the potential energy of the motion in the canal 
may be neglected compared with that in the basin. The angular frequency of a gravity 
wave of sufficiently small amplitude then is given by 

w = (gd/A?S)*, (1.3) 

where d is a dimensionless measure of kinetic energy [see Miles & Lee (1975); d/A? 
is analogous to the conductivity of an acoustical Helmholtz resonator (Rayleigh lS96),  
but note that the present problem is two-dimensional]. 
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It follows from the requirement h oc (gd)$/o $ S3 that a necessary condition for the 
Helmholtz mode is d $ 1. The contribution of the uniform canal to JZ is l /b  and 
dominates the contribution of the basin if 2n(l /b)  9 In ( S / b 2 ) ,  in which case (1.3) 
reduces to (Honda, Terada & Isitani 1908) 

w = (gbd/lS)a = m0 (b  < 14 S / b ) .  (1.4) 

The assumption of a narrow canal suggests that the dominant nonlinear effect (at 
least in so far as dissipation, which could be strongly affected by nonlinear motion at 
the ends of the canal, is small) for oscillations of finite amplitude should be the failure 
of the free-surface displacement in the canal, say z, to remain small compared with d. 
I consider this effect for a model in which the approximation of spatial uniformity 
and the restriction (1.2) are retained, but for which Jz /d(  Q 1 is replaced by the weaker 
restriction d + z > 0 (the canal must not run dry). Of course, the approximation of 
spatial uniformity cannot be expected to remain valid for d + z Q d,  and this model 
therefore should be expected to be significant in the present context only for relatively 
moderate values of - z/d. 

I consider first (in 9 2) free oscillations for which the kinetic energy of the motion in 
the basin may be neglected compared with that in the canal, but for which the potential 
energy in the canal (which is neglected in the classical approximation described above) 
is retained on the hypotheses that z/d = O(1) and Z/d  = O(s$), where Z is the free- 
surface displacement in the basin. This leads (in $3) to a Hamiltonian pair of phase- 
plane equations that can be integrated in terms of elliptic functions within an error 
factor of 1 + O(s) .  

I include the kinetic energy of the basin in 94. 'The corresponding phase-plane 
equations for free oscillations resemble those in 5 3 and are integrable; however, the 
solution cannot be expressed in terms of elliptic functions and must be expanded in 
powers of the amplitude to obtain analytical representations. 

I then go on, in 3 5, to discuss forced oscillations and the effects of radiation damping 
on the resonant response. The resulting differential equation is essentially that of 
Duffing for an oscillator with a soft spring, the solution of which may be obtained as a 
Fourier series in which the amplitudes of the harmonics are expanded in powers of 
the amplitude of the fundamental. Nonlinearity tilts the response curve (amplitude of 
fundamental us. forcing frequency) to the left and renders it triple valued in a certain 
frequency range. Damping limits the amplitude and leads to the usual hysteresis and 
jump phenomena. Subharmonic resonance also is possible. I discuss these phenomena 
for monochromatic forcing in order to illustrate the qualitative similarity between the 
present model and the corresponding single-degree-of-freedom oscillator; however, it  
must not be overlooked that broadband forcing by a random input is the usual case 
for a harbour. 

The model depicted in figure 1 is appropriate for a harbour or bay (Miles 1974). 
A model that is appropriate for coupled lakes (Honda et al. 1908; Neumann 1943; 
Defant 1961) is shown in figure 2.f I consider the corresponding nonlinear model, on 
the assumption that the kinetic energy in the basins is negligible compared with that 
in the canal, in 9 6 and obtain results for free oscillations that are equivalent to those 

t The similarity between oscillations in a two-basin Helmholtz oscillator and those in a 
U-tube (Newton 1686) has been noted by all of the above writers. 
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FIQURE 1. Single-basin Helmholtz oscillator. 

FIQURE 2. Double-basin Helmholtz oscillator. 

for a single basin plus canal. This two-basin configuration evidently would be superior 
to its single-basin counterpart for experimental purposes. 

It should perhaps be emphasized that the present nonlinearity is a consequence of 
the motion of the free surface in the canal and would be absent if the canal were replaced 
by a closed channel. It also is absent from an acoustical Helmholtz resonator. 

2. Equations of motion 
The shallow-water approximation to the continuity equation is 

where z and u are the free-surface displacement and the longitudinal velocity in the 
canal (0 < z < I). Integrating (2.1) on the assumption that z = z ( t )  and imposing the 
condition that the volumetric flux at the junction of the canal and the basin must 
equal the negative of the rate of change of the volume in the basin, 

b ( d + z ) u  = 82 (x = l ) ,  (2.2) 

where Z = Z(t) is the free-surface displacement in the basin and 2 = dZ/dt, we obtain 

( d + z ) u  = (AS/b)Z+i(Z-x). (2.3) 

The kinetic energy of the fluid motion in the canal (which dominates that in the 
basin for l / b  1 )  and the total potential energy are given by 

and 

(2.4) 



410 J .  W .  Miles 

( b )  

L 12 

n 
2 0  8 

V" % v2 

(c ) 

FIGURE 3. Equivalent circuits for: (a) $32 and 3, (b) $4, (c) $5.  The voltage acroas C, L V, 2. 

where p is the density of the fluid, E is given by (1.2), and wo is given by (1.4). Invoking 
Hamilton's principle for the Lagrangian T - V ,  we obtain the equations of motion 

and 

( 2 . 6 ~ )  

(2.6b) 

The kinetic and potential energies, (2.4) and (2.5), may be placed in the equivalent 

where x 

V, = Z, V, = 2, I, = SZ+blS, I, = SZ (2.9) 

are the voltages and currents in the equivalent circuit of figure 3u. The equivalent 
inductances and capacitances are given by 

L,, = 2L12 = L,, = +{gb(d + z)}-'l, C, = bl, C, = S (2.10) 

(I&, is the mutual inductance between L,, and LZ2); see Miles (1971, 1974) and Miles & 
Lee (1975) for further details (but only linear problems are treated in these references). 
It is worth emphasizing that, although the spatial variation of the free-surface dis- 
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1 a" 

-' t 
FIGURE 4. Phase plane for (3.4). The trajectories are given by pa- &p4fq2 = Qz, 

The crosses are saddle points. 

placement has been neglected in calculating the energies, the voltage in the equivalent 
circuit (which is analogous to the free-surface displacement) varies continuously from 
zero at  the input side of L,, (the open sea) to V, E Z at the output side of L, (the basin). 

3. Phase-plane trajectories 
The conventional approximations for the present model are to neglect z compared 

with d (linearization) and let e $ 0  in ( 2 . 6 a ) ,  which then yields a simple harmonic 
solution for Z with the frequency wo. The corresponding approximation to z/d may be 
determined from (2 .6b )  and is o(e) ,  O(E) ,  or O(1) for Z / d  = o(e),  O(e) ,  or O(e*), respec- 
tively; moreover, the second term in (2 .6b)  is negligible compared with, of the same 
order of magnitude as, or dominates the first term therein in these three rkgimes. This, 
together with the form of ( 2 . 6 ~ )  suggests the introduction of the dimensionless, 
canonically conjugate variables p and q through the transformation 

z = (2e)*dq(8),  i+iei = (2e)*w0(d+z)p(e), e = @,t, ( 3 . l a ,  b, C) 

z/d = -p2+ ( s /2 )*q+O(s )  (3.2) 

(3 .3)  

the substitution of which into (2 .6b )  and (2 .4 )+  (2 .5 )  yields 

and the dimensionless Hamiltonian 

H = ( T +  V)/(2pgbdZZ) = *(p2+q2)-$p*. 

The corresponding canonical equations, which also may be obtained from the 

(3 .4a ,  b)  

where, here and subsequently, O(e)  error terms are implicit. 
It follows from the usual phase-plane formalism (Stoker 1950) that (3 .4 )  have a 

centre at  p = q = 0 and a pair of saddle points at  p = _+ 1 and q = 0; see figure 4.  The 
phase-plane trajectories are given by the energy integral 

substitution of (3.1) into ( 2 . 6 ~ )  and the identity Z= wodZ/d8,  are 

dq/d8 = 8H/8p = (1 - p 2 ) p ,  = - a H / @  = -q ,  

H = constant = iQ2  = (Z0/2e3d)2, (3 .5)  
F L M  104 I4 
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FIGURE 5. The finite-amplitude reduction factor for the natural frequency of either the single- 
basin or double-basin Helmholtz oscillator (-), as given by (3.9), and the ratio of the minimum 
depth to the quiescent depth in the canal (- - -), as given by (3.10). 

where f Q is the value of q at p = 0. These trajectories are closed orbits around the 
centre at p = q = 0 if and only if Q2 < + and then intersect the p axis (q = 0) at 

p = + [ 1 - ( 1 - 2 & 2 ) * ] 4  -+P.  (3.6) 

The limiting trajectory (or separatrix), Q2 = *, passes through the saddle points, 
which then correspond to the limiting condition z = - d ;  however, the period then is 
infinite (see below). 

Eliminating q between ( 3 . 4 b )  and (3 .5 ) ,  we obtain the first-order differential 
equation 

(dp /d0)2+p2-+p4  = Q2, (3.7) 

which may be integrated to obtain 

p = - P s n $ ,  q=Qcn$dn$,  $ = Q B / P ,  k2=P4/2Q2=P2/(2-P2) ,  
(3.8a, b, c,  d )  

where sn, cn and dn are Jacobi elliptic functions of modulus k, and 0 is measured from 
the point on the trajectory at which p = 0 and q = Q .  The corresponding period is 
given by (see figure 5) 

T/To W ~ / W  = (2P/nQ)K(k).  (3.9) 

The minimum depth in the canal is given by (figure 5) 

{(z + d)/d}min = 1 - P2 = (1 - 292)*. (3.10) 
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Expanding (3.8) and (3.9) in powers of P (or &), we obtain 

p = - P{( 1 + &P2) sin wt + &P2 sin 3wt + O(P*)), (3.11 a )  

q = Q{( i - 00s wt + cos 3wt + o(~4))  (3.1 1 b )  

w / w o  = 1 - 392 - & &4 + 0 ( & 6 ) ,  (3.12) 

from which it appears that the effects of nonlinearity are rather mild for moderate 
values of &. The approximation (3.12) differs from (3.9) by less than 1 yo for 2Q < 0.5. 

It is rather clear that  the assumptions on which the preceding results are based 
could not remain valid as Q2 $, but it is perhaps worth noting that the limiting 
trajectory is given by 

p = - tanh ( 8 / J 2 ) ,  q = 2-tsech2 ( e / J 2 )  (Q2 = 4). (3.13a, b )  

and 

4. Inclusion of basin kinetic energy 
The kinetic energy of the fluid motion in the basin may be posed in the form 

T2 = + p ( A z / d )  = i (pZX2/b)  (p /d)Z2 = $pgL21& (4.1) 

where dZ is the contribution of the basin to the inertial parameter introduced in (1.3),  
p = A 2 b / l ,  and L, = A 2 / g d  (see figure 3b) .  Various approximations, including upper 
and lower bounds, to A, are developed by Miles & Lee (1975). 

Adding Tz to the kinetic energy of the fluid motion in the channel, (2.4)) we find that 
(2.6a) must be replaced by 

(2.6b) remains unchanged. The dimensionless momentum p ,  (3.1 b ) ,  therefore must be 
replaced by 

(4.3) p = (z€)-*w;l((d+z)-1(Z+ +€i) +pd-lZ) ,  

whilst (3.1 a,  c)  remain unchanged. However, we anticipate that 

B = (1+P--PP2)P9 (4.4) 

and find it convenient to work with p .  The counterparts of (3.2)-(3.4) then are 

z /d  = -p2+ (€/2)4 ( 1  + p  - 3pp2)-lq, 

H = $( 1 + p ) p 2  + +q2 - (a +p)p4+ +pp6, 

(4.5) 

(4.6) 

dq/de = aa /a@ = (1 -p2)p,  d9/do = - aH/aq = - q. (4.7a, b )  

If p < 3, equations (4.7) have a centre a t  p = q = 0, a pair of saddle points at 
p = f 1 and q = 0, and a pair of centres a t  p = f p+ and q = 0, wherep,, = ( 1  + p ) / 3 p .  
Trajectories around the latter centres are inadmissible in the present context, since 
p i  > 1 (for p < $) implies z + d  < 0. If p > 4 the saddle points appear a t  p = +p* 
and q = 0, whilst the outer centres appear a t  p = & 1 and q = 0; however, the relative 
disposition of the saddle points and centres is unchanged, since p i  < 1 for p > 4. If 
p = 4 the outer centres and saddle points coalesce, but the resulting singularity is 

14-2 
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qualitatively similar to a saddle point with respect to the closed trajectories IpJ < 1 
and lql < &. 

Eliminating q between the energy integral H = +Q2 and (4.7b), we obtain 

!I = { Q2 - ( 1 + PIP2 + (+ + 2p) P4 - pp6}4 (4.8u) 

8 = - (1 + p  - 3px2) {Q2 - (1 +p)x2 + (4 + 2p)x4 -px6}- tdx,  (4.8 b )  
j O P  

and 

(1 +p - 3pP2 sin2 a) [ 1 +p - (4 + 2p) Pa (1 + sin2 a) 

+pP4(1 +sin2a+sin4a)]-tda, 

where P is determined by 

(4.9) 

~2 - (1 + p)  ~2 + (+ + 2p) ~4 -pp6 = 0. (4.10) 

The integrals are no longer elliptic but may be evaluated either numerically or by 
expanding in powers of Q .  The former procedure yields results that are qualitatively 
similar to (3.8) and (3.9). The latter procedure leads to [cf. (3.11b) and (3.12)] 

A 

q = Q { ( 1 - & Q 2 ) ~ ~ ~ ~ t + & @ ~ ~ ~ 3 ~ t + O ( @ ) } ,  Q̂  = & / ( t + p )  (4.11~, b )  
and 

w A 
-= 1 -#&"((_BB+L_ 2 5 6  1:p)&"+0(Q^6), = wO/(l+p)t, (4.12u, b ,  

A 

where w p  is the natural frequency in the limit & + O .  It is evident from (4.11) and 
(4.12) that the present nonlinearity is negligible if p 9 1, which reflects the fact that 
the kinetic energy then is concentrated in the mouth of the basin. 

5. Forced oscillations with radiation damping 
External forcing by a prescribed displacement 2, ( t )  at the mouth of the canal may 

be incorporated in the equations of motion by replacing 2 by 2 - 2, in (2.6~) and (4.2) 
and z by z - 2, in (2.6b). External loading may be incorporated by replacing 2, by 
2, - zoIl, where zo is a radiation-impedance operator [see Miles & Lee (1975), wherein 
zo E 2, is a complex impedance]; the resulting equivalent circuit is shown in figure 3 (c). 
Frictional losses may be incorporated by introducing appropriate resistors in the 
equivalent circuit (Miles & Lee 1975). 

Introducing the dimensionless operator 

and 

and neglecting the basin kinetic energy (p < l), we obtain 

(5.3a) 
a i + l s i  2 - -  at ( d + z  )+w:(;+p%"(s))=w:-$ 

3 d (-) $i+@ +% 1 (d+z)2+$ i + g &  (&)2+w:[;+P%"(z$)) = wp$ 2 (5.3b) 
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FIGURE 6. Response curves for /3 = 0 (- - -), /3 > 0 (--) and Q,, = 0 (- - -). 
See equations (5.9) and (5.17). 

in place of ( 2 . 6 ~ ’  b).  Invoking the transformation (3.1) and proceeding as in $3, we 
obtain 

(5 .4 )  z /d  = -P2 + (&/2)* \q + n o ) ,  

where 
qo = (2&)-4 a-12, 

and O(E)  and O(@) are neglected. 
The principal effect of the term (2e)4pq0 in (5.5b) if 

qo = Q,COSU~, (5.7) 

as in the subsequent development, is to introduce even harmonics in the response. 
These could be significant if w N 2nw, (in which case they could be calculated by an 
obvious extension of the following analysis) but otherwise are of little importance. 
Neglecting (2s)4pqO and eliminating q between (5.5a, b ) ,  we obtain 

Note that B < 1, which reflects the fact that the present model has a high Q if radiation 
provides the principal damping. 

If qo is given by (5.7) and O ( p )  is neglected, (5.8) is Duffing’s equation for an un- 
damped oscillator with a soft spring (Stoker 1950). The resulting response curves form 
a one-parameter (Qo) family (see figure 6),  the spine of which corresponds to the free 
oscillations (Qo = 0) analysed in $ 3. 

Exact solutions of Duffing’s equation are not known, and the usual analytical pro- 
cedure is to expand p in a Fourier series and then to determine w2 and the amplitudes 
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of the higher harmonics (odd only) as expansions in powers of the amplitude of the 
fundamental. It is expedient, in the present problem, to pose this Fourier series in the 
form 

(5.9) p = - (w /wo)  (Plsinwt+ p3 sin 3wt+ . . .). 

Substituting (5.7) and (5.9) into ( 5 . 5 ~ )  and (5.8) and neglecting O(P), we obtain 

q = Qo COB wt + (w/wo)2 (Pl cos wt + 3P, COB 3wt + . . .), (5.10) 

and 

wherein higher powers of Pl are implicitly neglected. The next approximation includes 
- (w/wo)P5 sin 5wt and 5 ( w / ~ , ) ~ P ,  cos 5wt in (5.9) and (5.10), respectively, and yields 
Ps = O(Pz), as well as improved approximations to ( W / W ~ ) ~  and P3. 

The resistive component of 3 (which represents radiation) becomes significant in 
the neighbourhood of resonance and may be approximated by 

if the external depth is approximated by d. (The right-hand side of (5.13) should be 
multiplied byd/d,for an external depthd,; see Miles & Lee (1  975) and references given 
there regarding the effects of continental-shelf topography.) The reactive component 
of 9’ (which represents stored energy in an external neighbourhood of the mouth) 
has effects that are comparable with those of the kinetic energy in the basin and 
may be consistently neglected, as also may be the effect of damping on the harmonics 
(on the hypothesis that it is the fundamental that is being resonantly excited). The 
response then must be of the form [cf. (5.9)] 

p = - (w /oo)P l s in (wt+a)+  ..., (5.14) 

where (by hypothesis) a = O(P).  Substituting (5.7), (5.13) and (5.14) into ( 5 . 5 ~ )  and 
(5.8) and letting PJ. 0, we obtain 

q = qo+ ( W / O ~ ) ~  [Pl cos (wt +a) + a/3Pl @sin ( w t t a )  + ...], (5.15) 

a = - +/3(w/wo,“B - (w/w,)”-’ B 

{B - ( ~ / w , ) ~ } > ”  + 2P2(w/00)4 P2 = (Qo/P1) {P - ( ~ / ~ o ) ~ ) ,  

B = 1 - $(w/wo)2Pf. 

(5.16) 

(5.17) 

(5.18) 

and 

where 

The response curve described by (5.17) is sketched in figure 6. It is triple valued in a 
frequency domain 0 c wl < w < w2 c wo below the spine, which leads to hysteresis and 
jump phenomena as w is varied through (wl, w 2 ) ;  see Stoker (1950, cha. 4,54) for details. 

Subharmonic resonance of the present model also is possible. The analysis follows 
that for Duffing’s equation; see Stoker (1  950, cha. 4, $9 7 and 8). 
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6. Coupled basins 
Let Z1,, be the free-surface displacements in a pair of basins of free-surface areas 

Sl, , that are coupled by a canal of breadth b, length 21 and free-surface displacement z 
(figure 2). Continuity and the approximation of spatial uniformity then imply the 
constraint 

SIZl + S,Z, + 2blz = 0, (6.1) 

whilst convenient generalized co-ordinates are z and 

z = (S2Z2 - 4W(Sl+ dJ9 (6.2) 

from which it follows that 

z,= - (Z+s  z ) / (  1 -a), 2, = (Z -a)/( 1 + a), (6.3a, b )  

6 = bl/S,  S = +(Sl+S,), a = (S2-&)/(S1+&). (6.4a, b, c) 
where 

The velocity in the canal ( - 1  < x < I ) ,  which must satisfy (2.1) and the boundary 
conditions [cf. (2.2)] 

-sl& 
s2g2 

(d+z)u = ( 8 / b ) Z - ~ .  

b(d+z)u  = 

is given by [cf. (2.3)] 

The kinetic and potential energies implied by (6.3) and (6.6) are [cf. (2.4) and (2.5)] 

T = @ZS2/b) (d + z)-l (B2 + &,2i2) 

V = (plS2/b) (@$/a) (2’ + ~ECTZZ + C( 1 - a2 + s)~’}, 

(0: = (gbd/2Z) (Syl+ S;1) = w%/(  1 - a,) 

(6.7) 

(6.8) 

(6.9) 

and 

where 

is the natural frequency (for small displacements). The counterparts of (3.1)-(3.4) are 

where 

(6.11) 

(6.12) 

(6.13) 

The solution of the phase-plane equations (6.14) forp is given by (3.8a, c, d )  within 
l+O(s) .  The results (3.9), (3.11u), (3.12) and ( 3 . 1 3 ~ )  also hold in the present case, 
whilst (3.8b), (3.11b) and (3.13b) hold if 6 = 0. The solution for S = 0 (8, = S,) is 
given by 

21,2 = Z,( Tcn$dn$+s*ksn2$), (6.15) 



418 J .  W .  Miles 

where the upper and lower signs correspond to 2, and Z,, respectively, 2, = (2s ) idQ 
is the initial value of 2, (or of --Z,), and 4 and k are given by (3.8c, d ) .  Note that 
Z,(t) = Z,(t +frT), since shifting t by frT is equivalent to shifting $ by 2K, which 
changes the sign of cn 4 but not dn $, so that the motions in the two basins are 180" 
out of phase, as might have been inferred from symmetry; on the other hand 2, = - 2, 
only at  t = &nT (n = 0,1,2,  . . .). It follows that the solution for the single basin is given 
by the corresponding solution for coupled basins of equal area if and only if O(s*k) 
is neglected, either because k is small, as in the linear approximation, or because 
O(si), rather than merely O(c) ,  is neglected compared with 1 .  

This work was completed during my tenure as an Overseas Fellow of Churchill 
College and as a visitor in the Department of Applied Mathematics and Theoretical 
Physics of the University of Cambridge. It was partially supported by the Physical 
Oceanography Division, National Science Foundation, NSF Grant OCE77-24005, 
and by a contract with the Office of Naval Research. 
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